ASEAN TECHNICAL WORKSHOP ON DEVELOPMENT OF THE ASEAN PEATLAND FIRE PREDICTION AND EARLY WARNING SYSTEM

20-21 March 2012 Sunway Putra Hotel, Kuala Lumpur, Malaysia

Group 1 Report

Is there a need for enhancement of existing FDRS systems?

- In general the systems used in Indonesia and Malaysia/Regional level are good and in the last 2 years have been improved such as through
- expanding the sites for data collection, inclusion of overlays of peat distribution and google maps (Malaysia);
- enhancement of data generation (AWS and satellite data) and addition of short and medium term forecasting (Indonesia)

Further enhancements identified

Further fine tuning and calibration of the indices

- e.g. Use of Duff Moisture Code vs Drought Code for drained peatlands
- Possible different threshold for drought code in Mekong region

Improving meteorological data availability

e.g. Enhancing information submitted by countries to WMO database, adding new automatic weather stations

Inclusion of Additional data layers

• e.g. fire prone areas, peatlands

Enhancing the prediction and early warning capability

• Short term (1-7 days) medium term (1-2 months)

Enhancing use of the information in the system

• Dissemination to local users and development of SOPs for action.

Verification and calibration of the indices

- Information in the FDRS need to be cross-checked with information on the ground situation
- May need to consider sub-region differences and consider differences in major fuel types between e.g. southern and northern ASEAN.
- Analyses can be done for frequency of hotspots in areas with different FDRS danger levels.

Improving meteorological data availability

- Two countries in the region (Cambodia and Myanmar) are not currently submitting data to WMO database and so MMD cannot access the data to prepare FDRS maps for these countries
- Countries can enhance the data availability by adding new automatic weather stations (AWS) or enhancing level of information submitted to WMO database.
- New stations can be established near fire prone peatlands (as has been done in Malaysia) with the new station next to Raja Musa PSF.
- Satellite data is being used by Indonesia to supplement data in areas without AWS.
- Malaysia is considering use of radar to expand rainfall data availability

Inclusion of Additional data layers

- Four specific options for additional data layers to be included in FDRS maps were identified:
 - Peatlands
 - Fire prone areas
 - Geographic features (roads, rivers, towns etc.)
 - Land use
 - Other possible data could be Fuel type and ground water level/soil moisture
- The initial priority for inclusion were Peatlands, Fire prone areas and Geographic features
- Concerns on using an overlay with landuse map is that it may cause the image to be over-crowded and also that land use classification varies between countries
- Malaysia has already started overlay of peatland map and google earth (for geographic data), Indonesia is in the process of overlaying peatland distribution & fire prone area.
- MMD can help Thailand and Brunei if basic information is provided.

Enhancing the prediction and early warning capability

- Indonesia has proposed to incorporate Short term (1-7 days) and medium term (1-2 months) forecasting into the FDRS system.
- Malaysia is experimenting with 2-3 day forecasting.
- Constraint with forecasting is the complex models and the large amount of data and long model run time.
- For regional level this could be simplified by use of simpler models for indicative (less accurate – but maybe adequate) predictions.
- This could be refined at country or site level through local weather prediction systems

Enhancing use of the information in the system

- It is very important to enhance the use of the information in the system and use it for fire prevention and control purposes.
- There is experience in different countries in how to engage local users and communities.
- Information and alerts are given in a way that is easily understood by the respective target audiences.
- Indonesia (Ministry of Forestry) has experience in promoting the use of the system to plantation companies and local communities.
- The system should also be publicised better e.g. through workshops, training courses and mass media

2. Do we need Regional or country system or both?

Agreed that we need both

- country systems in large countries with significant areas of peatlands or fire prone areas (such as Indonesia and Malaysia) and
- regional systems to provide guidance for other countries with less significant fire problems or less capability to establish own system.

3. Do we need a standard system design or it can be varied?

- All systems are based on the Canadian FDRS system.
- It was agreed that the use of the Canadian system should be maintained as it has enabled FDRS to operate for 10 years in the region.
- For the future it is important to obtain updated or open source versions of the software to enable enhancement of some of the features.

4. What is role of Hotspot data in relation to FDRS?

- Hotspot data can complement FDRS information however once a fire becomes large enough to be detected as a hotspot it will be difficult (especially for peatlands) to control.
- It is useful to overlay hotspots on Fuel type (e.g. peatlands) and Fire prone areas – to enable special alerts to be given e.g. based on number of hotspots on peat.
- MODIS satellite appears more sensitive and efficient in detecting hotspots and minimising false alarms.
- It is suggested that ASMC in future monitors MODIS in parallel with NOAA.
- Ground truthing of hotspots remains an important issue as well as feedback on results to ASMC and hotspot monitoring agencies.

5. What opportunities from linkage with other Networks

- Several existing networks or mechanisms were identified which could be linked with FDRS activities in SE Asia including
 - Global Fire Monitoring Centre based in Germany
 - Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) Fire Mapping and Monitoring Theme
- And associated regional networks
 - SE Asia Regional GOFC-GOLD Network (SEARIN),
 - SEA Regional Wildfire Science Management Network (regional network of the GFMC)
- The benefits of such linkages could include
 - input into the further development and refinement of the FDRS systems and access to data sets on land cover etc. for overlays.
 - enhance learning and exchange on outreach and development of early warning systems based on FDRS.

Thank you