Brush fire south of Athens injures firemen, damages homes


 
03 August 2017

published by http://www.reuters.com


Greece - ATHENS (Reuters) - A brush fire south of the Greek capital injured three firefighters and damaged homes and cars on Thursday but has now been contained, authorities said.

Authorities had ordered the evacuation of dozens of homes in two communities in Lagonissi, a coastal area some 30 km (19 miles) from Athens with homes scattered across land plots.

Around 40 firefighters, 20 fire trucks and two water-dropping helicopters battled the blaze, which locals say broke out around 1100 GMT (2 p.m. local) and was fanned by strong winds.

Three firemen were lightly injured and two trucks suffered damage, a fire brigade official said. At least three homes were damaged by flames.

Summer wildfires are common in Greece. Hundreds died in 2007 during the most serious outbreak in decades.

An international team of climate researchers from the US, South Korea and the UK has developed a new wildfire and drought prediction model for southwestern North America. Extending far beyond the current seasonal forecast, this study published in the journal Scientific Reports could benefit the economies with a variety of applications in agriculture, water management and forestry.

Over the past 15 years, California and neighboring regions have experienced heightened conditions and an increase in numbers with considerable impacts on human livelihoods, agriculture, and terrestrial ecosystems. This new research shows that in addition to a discernible contribution from natural forcings and human-induced global warming, the large-scale difference between Atlantic and Pacific ocean temperatures plays a fundamental role in causing droughts, and enhancing wildfire risks.

"Our results document that a combination of processes is at work. Through an ensemble modeling approach, we were able to show that without anthropogenic effects, the droughts in the southwestern United States would have been less severe," says co-author Axel Timmermann, Director of the newly founded IBS Center for Climate Physics, within the Institute for Basics Science (IBS), and Distinguished Professor at Pusan National University in South Korea. "By prescribing the effects of man-made climate change and observed global ocean temperatures, our model can reproduce the observed shifts in weather patterns and wildfire occurrences."



Read more at: https://phys.org/news/2017-07-atlanticpacific-ocean-temperature-difference-fuels.html#jCp
An international team of climate researchers from the US, South Korea and the UK has developed a new wildfire and drought prediction model for southwestern North America. Extending far beyond the current seasonal forecast, this study published in the journal Scientific Reports could benefit the economies with a variety of applications in agriculture, water management and forestry.
 

Over the past 15 years, California and neighboring regions have experienced heightened conditions and an increase in numbers with considerable impacts on human livelihoods, agriculture, and terrestrial ecosystems. This new research shows that in addition to a discernible contribution from natural forcings and human-induced global warming, the large-scale difference between Atlantic and Pacific ocean temperatures plays a fundamental role in causing droughts, and enhancing wildfire risks.

"Our results document that a combination of processes is at work. Through an ensemble modeling approach, we were able to show that without anthropogenic effects, the droughts in the southwestern United States would have been less severe," says co-author Axel Timmermann, Director of the newly founded IBS Center for Climate Physics, within the Institute for Basics Science (IBS), and Distinguished Professor at Pusan National University in South Korea. "By prescribing the effects of man-made climate change and observed global ocean temperatures, our model can reproduce the observed shifts in weather patterns and wildfire occurrences."



Read more at: https://phys.org/news/2017-07-atlanticpacific-ocean-temperature-difference-fuels.html#jCp